
Abstract. A density functional theory method using
partially fixed molecular orbitals (PFMOs) is presented.
The PFMOs, which have some fixed molecular orbital
coefficients and are non-orthogonal, are a generalization
of the extreme localized orbitals (ELMOs) of Couty,
Bayse, and Hall (1997) Theor Chem Acc 97:96. A non-
orthogonal Kohn-Sham method with these PFMOs is
derived, and is applied to molecular calculations on the
ionization potential of pyridine, the energy difference
between cis- and trans-butadiene, the reaction barrier
height of the cyclobutene-cis-butadiene interconversion,
and the potential energy curve of the hydrogen shift
reaction of hydroxycarbene to formaldehyde. The
PFMO Kohn-Sham method reproduces well the results
of the full Kohn-Sham method without having a
restriction on the molecular orbital coefficients. The
difference is less than 0.1 eV in the ionization potential
and about 0.1 kcal/mol in the barrier height and in the
potential energy calculations.

Keywords: Non-orthogonal Kohn-Sham method –
Partially fixed molecular orbital (PFMO) – Extreme
localized molecular orbital (ELMO)

Introduction

The description of the electronic structure of large
molecular systems is one of the central issues in current
quantum chemistry. Much effort has been expended in
this area at the correlated level as well as at the Hartree-
Fock (HF) level.

At the correlated level in ab initio molecular orbital
(MO) theory, the local correlation method is one of the
most successful methods. It is widely known that the

canonical HF orbitals are usually spread over the whole
system, and consequently, electron pairs are not spa-
tially well separated. However, physically, dynamic
electron correlation in the molecular environment is a
short-range effect approaching r�6 in the long-distance
limit. To make use of the short-range nature in the
electron correlation method, the use of spatially local-
ized molecular orbitals (LMOs) is essential. There have
been a number of papers on local correlation methods
[1], including the local second-order Møller-Plesset
(LMP2) method [1, 2, 3, 4, 5, 6, 7], the local coupled
cluster doubles (LCCD) method [8], the local coupled
cluster singles and doubles (LCCSD) method [9, 10],
and the local coupled cluster singles and doubles with
perturbative triples (LCCSD(T)) method [11].

At the HF level, linear scaling methods (or methods
that move toward linear scaling) have been intensely
studied. In each part of the self-consistent field (SCF)
procedure, techniques for approaching linear scaling
have been developed. For example, such techniques in-
clude the fast multipole moment (FMM) method [12,
13], the tree code method [14, 15], and the J-matrix en-
gine [16] for the Coulomb part of the Fock matrix; the
order-N-exchange (ONX) [17], linear-exchange-K [18],
and near-field-exchange (NFX) [19] methods for the
exchange part of the Fock matrix; and the conjugate
gradient density matrix search to avoid diagonalization
of the Fock matrix [20]. This area of study is attracting
the interests of quantum chemists, and the development
of appropriate techniques is still under intense investi-
gation.

An HF method has been proposed by Couty et al.
[21], which also utilizes LMOs. The LMOs of Couty et al.,
extremely localized molecular orbitals (ELMOs), are
defined as MOs that have coefficients only on some
predetermined basis functions and no coefficients on
the other functions. Thus, the ELMOs are essentially
non-orthogonal to each other. The SCF scheme proceeds
via the quasi-Newton-Raphson method [22], keeping
the localizability of the orbitals without diagonalization
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of the Fock matrix, since the iterative diagonalization of
the Fock matrix is no longer considered to be a good
strategy for the non-orthogonal orbitals.

The HF method of Couty et al. has been successfully
applied to the molecular systems and is a candidate for
large system theory. However, the HF method does not
include correlation effects. Moreover, the constraints on
the MOs described in the paper are so severe, that the
total energy has an error of several millihartrees even for
small molecules with a few atoms, and so it is compen-
sated for by mixing of the MOs after carrying our SCF
scheme [21].

In the present article, we extend the HF method of
Couty et al. to a Kohn-Sham (KS) density functional
theory (DFT) method that uses non-orthogonal orbi-
tals, such as ELMOs. We also generalize the ELMOs
to more flexible MOs, denoted as partially fixed
molecular orbitals (PFMOs), which have some fixed
MO coefficients for the predetermined basis functions.
Our method is applied to molecular calculations on
pyridine, butadiene, cyclobutene, and hydroxycarbene.
The performance of the new non-orthogonal KS-DFT
method using the PFMOs is comparable to the original
KS-DFT method using orthogonal unfixed MOs. The
errors in the total energy are in the order of millihar-
trees, and those in the relative energy, such as the
ionization and activation energies, are within one
millihartree.

The contents of the present article are as follows. In
the next section, the non-orthogonal KS-DFT method is
derived and the PFMOs are introduced. In the sub-
sequent section, the criteria for fixing the MO coeffi-
cients are described and then the scheme is tested on
some molecular systems. In the final section, concluding
remarks are given.

Theory

Non-orthogonal Kohn-Shem DFT method

We will begin by deriving a non-orthogonal Kohn-Shem
DFT method. The non-orthogonal KS method is
parallel to the ELMO HF method. In the following, we
will therefore not explain the details that are common to
the ELMO HF method.

Let {vl} be basis functions and {/i} be the non-
orthogonal MOs of the system,

ui ¼
X

l

Clivl ð1Þ

Using these non-orthogonal MOs, the KS energy is
written as

E ¼
X

ij

2hcoreij S�1ij þ
X

ijkl

ðijjklÞ 2S�1ij S�1kl � CexS�1ik S�1jl

� �

þ Exc½q� ð2Þ

where Sij, hij
core, and (ij|kl) are the overlap, bare nuclei,

and electron repulsion integrals in the MO basis, defined
by

Sij ¼
Z

dr uiðrÞujðrÞ ð3Þ

hcoreij ¼
Z

dr uiðrÞ �
r2

2
�
X

a

Za

r� Raj j

 !
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and

ðijjklÞ ¼
Z

dr1dr2 uiðr1Þ ujðr1Þ
1

r12
ukðr2Þ ulðr2Þ ð5Þ

respectively. Cex is a constant for the hybrid DFT
method. The last term in Eq. 2, Exc[q], is an exchange-
correlation energy functional for the electronic density
q(r), which is defined in the local density approximation
as

Exc½q� ¼
Z

dr f ðqÞ ð6Þ

and in the generalized gradient approximation as

Exc½q� ¼
Z

dr f ðq;DqÞ ð7Þ

The total electronic energy, Eq. 2, is dependent the
expansion coefficients {Cli} through Eq. 1. The KS
orbitals are determined such that the coefficients mini-
mize the energy expression, Eq. 2.

In the conventional KS-DFT, we obtain the orthog-
onal KS orbitals through the iterative diagonalization of
the KS matrix fKS, that is, the solution of the KS-SCF
equation,

fKSC ¼ SCe ð8Þ

where C and � store the MO coefficients and orbital
energies, respectively, and S is the overlap matrix in the
AO basis. On the other hand, in the KS method using
non-orthogonal orbitals, as well as the HF method using
ELMOs, the diagonalization procedure is not available.
Hence, we employ the quasi-Newton-Raphson (QNR)
scheme for orbital optimization [21, 22] instead. The
QNR scheme scales as N2 (N: the size of the system),
whereas the diagonalization scheme scales as N3. An-
other advantage of the QNR scheme is that it allows us,
not only to treat non-orthogonal MOs, but also to fix
some MO coefficients as in the ELMOs and the partially
fixed MOs described in the subsequent sub-section.
Neither diagonalization, nor manipulation of the full
coefficients is necessary.
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The Newton-Raphson equation has the form,

dX ¼ Xiþ1 � Xi ¼ �H�1g ð9Þ

where X is a one-dimensional array that stores the active
MO coefficients, and g andH are the gradient vector and
the Hessian matrix, respectively, for the energy E with
respect to active MO coefficients,

gak ¼
@

@Cak
E ð10Þ

and

hak;bl ¼
@2

@Cak@Cbl
E ð11Þ

In the quasi-Newton-Raphson method, the true Hessian
matrix is not used, but instead, an approximation of the
Hessian matrix at the current iteration is employed. In
our implementation, following the ELMO HF proce-
dure, the blocked Hessian matrix,

hak;bl ffi
@2

@Cak@Cbk
E ðk ¼ lÞ

0 ðk 6¼ lÞ

(
ð12Þ

and its inverse are computed analytically at the initial
iteration, and the inverse Hessian matrix is updated
after each iteration by the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method [23].

In this way, we can optimize orbitals (keeping some
MO coefficients fixed if necessary). Below, we provide
explicit formulae for the gradient vector and the blocked
Hessian matrix.

Gradient vector and approximate Hessian matrix

TheKS energy Eq. (1) can be partitioned into the HF-like
energyE¢HF and the exchange-correlation energyExc[q] as

E ¼ E0HF þ Exc½q� ð13Þ

The former part E¢HF can be represented by

E0HF ¼
X

lm

hcorelm þ F 0HF
lm

� �
Plm ð14Þ

where hlm
core, F ¢lm

HF, and Plm are the bare-nuclei Hamil-
tonian integrals, the Fock-like matrix, and the density
matrix in the AO basis, respectively. The Fock-like and
density matrices are defined by

F 0HF
lm ¼ hcore

lm þ
X

rs

Prs 2ðlmjrsÞ � Cexðls rmj Þ½ � ð15Þ

and

Plm ¼
Xocc

ij

CliCmjS�1ij ð16Þ

where Sij ¼
P
lm

CliCmjSlm: The density function q(r) and

its gradient �q(r) in the latter part Exc[q] are represented
in terms of the density matrix Plm as

qðrÞ ¼ 2
X

lm

Plm vlðrÞvmðrÞ ð17Þ

and

rqðrÞ ¼ 2
X

lm

Plm vmðrÞrvlðrÞ þ vlðrÞrvmðrÞ
� �

ð18Þ

From the expressions, Eqs. 13, 14, 15, 16, 17, 18, we
can derive the gradient and Hessian formulae.

Differentiating the HF-like energy part E¢HF and the
exchange-correlation energy part Exc[q], we find

@

@Cak
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X

lm

2F 0lm
@Plm

@Cak
ð19Þ

and

@
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Z
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Thus, we have the gradient formula,

@

@Cak
E ¼

X

lm

2f KS
lm

@Plm

@Cak
ð21Þ

with

f KS
lm ¼ F 0lm þ

Z
dr vlðrÞ

dExc

dq
vmðrÞ ð22Þ

The gradient for the density matrix @Plm=@Cak can be
found elsewhere [21].

In a similar manner, we can further derive the initial
blocked Hessian matrix,

@2

@Cak@Cbk
E ¼ @2

@Cak@Cbk
E0HF þ

@2

@Cak@Cbk
Exc½q� ð23Þ

Since E¢HF is structurally close to the HF energy, we
can use the same approximation as in the ELMO HF
case. Neglecting the product of the first derivative of
the density matrix, ð@Plm=@CakÞð@Prs=@CbkÞ, we have
[21]

@2

@Cak@Cbk
E0HF ffi

X

lm

2F 0lm
@2Plm

@Cak@Cbk

� �
ð24Þ

Similarly, we can derive the second derivative of Exc[q]
as
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Here, the product of the first derivatives of density
ð@q=@CakÞð@q=@CbkÞ is neglected. From Eqs. 24 and 25,
we have an approximate blocked Hessian matrix,

@2

@Cak@Cbk
E ffi

X

lm

2f KS
lm

@2Plm

@Cak@Cbk

� �
ð26Þ

The second derivative of the density matrix
@2Ppq=@Cak@Cbk is further approximated for simplicity in
the calculations, and this too, is given elsewhere [21].

Partially fixed molecular orbitals (PFMOs)

We then extend the definition of ELMOs. In the ELMO
HF method, the MOs are forced to have non-zero ele-
ments only over a limited number of basis functions and
are fully optimized with this localization constraint. In
other words, this definition of an ELMO can be taken to
mean that some MO coefficients are fixed at zero in the
linear combination of the atomic orbitals (AOs),

ui ¼
X

l

Clivl ð27Þ

(Cli = 0 for predetermined AO labels l). This is quite
effective for localizing orbitals, as there is no contribu-
tion from the AOs other than the predetermined AOs.
However, since this is such a severe constraint, the error
in the total energy reaches several millihartrees, even for
small molecules such as, CH4, H2O, and NH3. In fact,
Couty et al. introduced the Jacobi correction to com-
pensate for it [21].

Therefore, in our method, the condition that some
MO coefficients are fixed at zero is relaxed to the con-
dition that some coefficients are fixed to certain values,

ui ¼
X

l

Clivl ð28Þ

where Cli = fixed value for predetermined AO labels l.
Although we have relaxed the MO condition, the com-
putational scheme of the ELMO HF method is still
applicable to our case. Now that the orbitals are not
necessarily extremely localized, hereafter we call the

orbitals defined by Eq. 28 partially fixed molecular
orbitals (PFMOs).

In the ELMO method of Couty et al., some prede-
termined variables are fixed at zero and thus do not
affect the electronic density. On the other hand, in our
method, some predetermined MO coefficients are also
fixed, but they can assume non-zero values. Therefore,
they contribute to the electronic density and energy.
Note that, however, this does not reduce computational
efficiency compared to the ELMO case.

Applications to molecular systems

We applied the present method to some molecular sys-
tems to illustrate its performance. The examples chosen
are the ionization potential of pyridine, the energy dif-
ference between cis- and trans-butadiene, the reaction
barrier height for the interconversion of cyclobutene and
cis-butadiene, and the potential energy curve of the
hydrogen shift reaction of hydroxycarbene to formal-
dehyde. The results are compared to those of the con-
ventional KS-DFT method.

Since we have extended the concept of the ELMO to
the PFMO in the previous section, we first describe a
new scheme for fixing the coefficients of the PFMOs.

Some modern basis sets, such as Dunning’s cc-pVXZ
(X = D, T, Q, 5, ....) [24] and the ANO [25] basis sets,
consist of functions corresponding to atomic orbitals
and other functions. For example, the cc-pVDZ basis set
for carbon has functions corresponding to the 1s, 2s, and
2p atomic orbitals, functions for expressing the distor-
tion of the valence orbitals, and functions describing
polarization. For convenience, let us name the basis
functions corresponding to the core atomic orbitals core
basis functions and those corresponding to the valence
atomic orbitals valence basis functions, and the other
basis functions extended basis functions. [Note that only
the functions corresponding to the atomic orbitals (e.g.,
the carbon 2s or 2p), and not the functions for distor-
tion, are valence basis functions].

The core and valence basis functions extracted from
the original basis set constitute a minimal basis set.
Using this minimal basis set, we first carry out a
preliminary HF calculation, which can be readily
performed in many cases, even for large molecules.
According to the HF MOs solved for the minimal basis
set, the fixed values are determined as follows:

1. The chemical core MOs. All the MO coefficients are
frozen to the minimal basis set values.

2 The occupied MOs except for the core MOs.
(i) The coefficients of the core basis functions are

frozen to the minimal basis set values.
(ii) The coefficients of the valence basis functions

are frozen to the minimal basis set values if the
absolute values of the coefficients are below a
threshold d.
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(iii) The criterion determining the coefficients of the
extended basis functions is somewhat compli-
cated. The basis functions are grouped by
function center. If the absolute values of the
coefficients of the valence basis functions in a
group are all below the threshold d, then the
coefficients of the extended basis functions in
the group are all frozen to zero. In other words,
if the valence basis functions in a group are not
important for an MO, then the extended basis
functions in the group are also unimportant.

All the other variables are optimized in the PFMO KS
calculations.

Note that MOs determined with this scheme are
examples of PFMOs and other restrictions are possible.
In fact, a different scheme will be necessary for inorganic
compounds, particularly including transition metals.

The following provides some more details specific to
the computations carried out.

We used the cc-pVDZ and cc-pVTZ basis sets with
the polarization functions omitted. (Hereafter, we will
label these VDZ and VTZ, respectively). The inclusion
of the polarization functions is possible according to
above Criterion (2-iii), but the reason for freezing them
is a little weak, when compared to the extended func-
tions for distortion of the valence orbitals. Thus, we
omitted the polarization functions in the present test
applications.

As reference orbitals for determining the fixed values
through Criteria (1) and (2) mentioned above, we tested
two types of HF orbitals built with the minimal basis set:
the canonical MOs and the Boys localized MOs [26].
In this section, for brevity, we call these orbitals the
canonical reference and localized reference MOs,
respectively. We set the threshold of Criterion (2-ii) as d
= 0.001 in all the computations.

Unless otherwise specified, a combination of the
Becke 1988 exchange [27] and the one-parameter pro-
gressive correlation [28], a BOP functional, was used in

the KS-DFT calculations. The accuracy of the BOP
functional is now well established [29, 30, 31].

Ionization potential of pyridine

The first example of our method is the ionization po-
tential (IP) of pyridine, C5H5N. Pyridine has a p electron
configuration of (1b2)

2(2b2)
2(1a2)

2. The highest occupied
molecular orbital (HOMO) 1a2 is a superposition of p
bonding orbitals between the C2 and C4 atoms and be-
tween the C5 and C6 atoms with a negative relative
phase, where the atoms are numbered by 1–6 from the N
atom in clockwise order. The ionized state is well de-
scribed by the configuration having an electron removed
from the HOMO.

The geometry used is the (conventional) HF structure
with the VDZ basis set. The IP was computed with the
delta SCF and delta DFT methods, i.e. the difference
between the energies of the neutral molecule and the
monovalent cation. Tables 1 and 2 show the results of
the PFMO HF and KS methods, respectively. The HF
results are for comparison as well as for investigating the
PFMO effect.

Looking at the HF results in Table 1, the total
number of active MO coefficients is 3906 (for the VTZ
basis set) in the neutral state, and 3813 in the ionized
state. These are reduced in the PFMO to 1662 (canonical
reference orbitals) and 2256 (localized reference orbitals)
in the neutral state, and to 1566 (canonical reference)
and 2406 (localized reference) in the ionized state. About
60% of the coefficients in the canonical reference case
and 40% in the localized reference case are frozen and
removed from the variational space.

Even though the variational spaces are reduced, the
increase in the total energy is very small: less than one
millihartree in both the neutral and ionized states. As a
result, the deviation of the PFMO HF from the full HF
in IP is at most 0.01 eV. We can say that the PFMO
scheme with the HF method works well in this system.

Table 1. Ionization potentials for pyridine C5NH5 calculated with conventional and (canonical and localized reference) PFMO HF
methods

VDZ C5NH5 C5NH5
+ Ionization

Potential a(eV)
Number of
active MO coefficients

Total Energy
(Hartree)

Number of
Variables

Total Energy
(Hartree)

Conventional HF 2688 (100%) )246.605317 2624 (100%) )246.322588 7.69
PFMO HF(canonical reference) 1108 (41%) )246.604929b 1056 (40%) )246.322180 7.69
PFMO HF(localized reference) 1524 (57%) )246.604929b 1598 (61%) )246.322084 7.70

VTZ

Conventional HF 3906 (100%) )246.642937 3813 (100%) )246.364040 7.59
PFMO HF(canonical reference) 1662 (43%) )246.642603 1566 (41%) )246.363720 7.59
PFMO HF(localized reference) 2256 (58%) )246.642519 2406 (63%) )246.363714 7.59

aAn experimental value of ionization potential for C5NH5 is 9.26 eV [32].
bThe variational spaces for the canonical and localized reference cases are almost identical due to high symmetry, though the numbers of
variables are different; hence very close total energies are yielded. The situation is also true of some cases in subsequent tables.
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Observing the KS-DFT results in Table 2, the
reduction in the active MO coefficients is the same
as in the HF case, since in both cases we used HF
reference MOs in the determination of the fixing of the
coefficients. One feature we can see is the increase in
the total energy. In the KS-DFT case, the increase of
the energy is about seven millihartrees in both states
and for both basis sets. This is rather large compared
to the HF case. However, the increase is uniform for
the two states. The IP, therefore, shows a very small
error with the PFMO KS method of only 0.01 eV, at
most, which is nearly the same as that of the HF
values.

The VDZ basis set gives similar results. The IP ob-
tained with the PFMO KS method is 8.52 eV for both
the canonical and localized reference MOs, which is in
very good agreement with the full KS-DFT value of
8.51 eV.

The computed value of the KS-DFT of 8.57 eV (with
the VTZ basis set) is 0.69 eV smaller than the experi-
mental value of 9.26 eV [32], although it is much better
than the HF value of 7.59 eV. However, this error arises
from the KS-DFT method itself. We can therefore say

that the PFMO KS method also works well for this
system.

Energy difference between cis- and trans-butadiene

The second example of our method is its application to
the energy difference between the two isomers of buta-
diene. It is widely known that trans-butadiene is slightly
more stable than the cis-butadiene. The energy differ-
ence is 2.9 kcal/mol according to experimental data [33].
We calculated this energy difference using the PFMO
KS and HF methods. The structures used in the calcu-
lations are the (conventional) HF optimized geometries
with the VDZ basis set.

Tables 3 and 4 summarize the results of the HF and
KS-DFT methods, respectively. Our scheme of fixing
the MO coefficients reduces the number of coefficients
of the VTZ basis set from 2100 to 1008 and 1020 (for
the cis and trans forms, respectively) for the canonical
reference MO case, and 1272 and 1260 (for the cis and
trans forms, respectively) for the localized reference
MO case. The ratio of active MO coefficients is about

Table 2. Ionization potentials for pyridine C5NH5 calculated with conventional and (canonical and localized reference) PFMO KS-DFT

DZV C5NH5 (C5NH5)
+ Ionization

Potential a(eV)
Number of active
MO coefficients

Total Energy
(Hartree)

Number of
Variables

Total Energy
(Hartree)

Conventional KS 2688 (100%) )248.113073 2624 (100%) )247.800185 8.51
PFMO KS(canonical reference) 1108 (41%) )248.106620 1056 (40%) )247.793643 8.52
PFMO KS(localized reference) 1524 (57%) )248.106620 1598 (61%) )247.793661 8.52

TZV

Conventional KS 3906 (100%) )248.164645 3813 (100%) )247.849585 8.57
PFMO KS(canonical reference) 1662 (43%) )248.157093 1566 (41%) )247.841987 8.57
PFMO KS(localized reference) 2256 (58%) )248.156978 2406 (63%) )247.842000 8.57

aAn experimental value of ionization potential for C5NH5 is 9.26 eV [32]

Table 3. Energy difference between cis- and trans-butadiene calculated with the conventional and (canonical and localized reference)
PFMO HF methods

VDZ cis)butadiene trans)butadiene Energy difference
a(kcal/mol)

Number of active
MO coefficients

Total Energy
(Hartree)

Number of
variables

Total Energy
(Hartree)

Conventional HF 1440 (100%) )154.863444 1440 (100%) )154.868966 3.47
PFMO HF(canonical reference) 680 (47%) )154.863231 680 (47%) )154.868753 3.47
PFMO HF(localized reference) 832 (58%) )154.863205 840 (58%) )154.868718 3.46

VTZ

Conventional HF 2100 (100%) )154.888087 2100 (100%) )154.893851 3.62
PFMO HF (canonical reference) 1008 (48%) )154.887886 1020 (49%) )154.893703 3.65
PFMO HF (localized reference) 1272 (61%) )154.887923 1260 (60%) )154.893680 3.61

aAn experimental value of energy difference between cis- and trans-butadieneis 2.9 kcal/mol [33].
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50% (canonical reference) and 60% (localized refer-
ence).

Similar to the description in the previous subsection,
the increase in energy from the PFMO scheme is very
small for the HF method: less than one millihartree in all
the cases in Table 3. The resulting deviation from the
energy difference value of the conventional HF method
is also very small, at less than 0.1 kcal/mol.

The KS total energies increase from the full KS energy
by 5.3 and 6.1 millihartrees (for the cis and trans forms,
respectively) for the canonical reference case, and by 5.1
and 6.1 millihartrees (for the cis and trans forms,
respectively) for the localized reference case. The resulting
energy difference is 4.01 and 3.89 kcal/mol, for the
canonical and localized reference cases, respectively. The
error from the full KS-DFT result of 3.90 kcal/mol is very
small. Furthermore, the agreement with the experimental
value 2.9 kcal/mol is also good.

Similar results are obtained with the VDZ basis set,
as discussed in the previous subsection. The energy dif-
ference obtained with the PFMO KS method is 3.82 and
3.79 kcal/mol for the canonical and localized reference
cases, respectively, which are both very close to the full
KS-DFT value of 3.82 kcal/mol.

Reaction barrier height for the interconversion
of cyclobutene and cis-butadiene

The third application of our method discussed is the
reaction barrier height for the interconversion of cyc-
lobutene and cis-butadiene (Fig. 1). From previous
studies, this system is known as one where the electron
correlation is important for properly describing the
bond breaking/formation (for the forward/reverse reac-
tion) in the transition state structure [34, 35, 36, 37]. The
geometries were determined by conventional DFT
calculation, using the Becke 1988 exchange [27] and
Lee-Yang-Parr correlation [38] functionals with the
cc-pVDZ basis set.

Table 5 shows the total energy of each structure and
the barrier height at the HF level, and Table 6 shows the
total energy of each structure and the barrier height at
the KS-DFT level. The deviations in energy from the full
HF and KS-DFT energies are similar to the previously
discussed cases, at less than one millihartree for the HF
case, and four to five millihartrees for the KS-DFT case.
One desirable feature is that, although the ratios of the
active MO coefficients are different, depending on
the structures used in each PFMO method, the errors in
the barrier height between the conventional and PFMO
methods is 0.13 kcal/mol at most.

The electron correlation is important for an accurate
description of this reaction. Experiments give the barrier
height as 33 kcal/mol for the forward reaction (cyclo-
butene to cis-butadiene) [39] and 41 kcal/mol for the
reverse reaction (cis-butadiene to cyclobutene) [33, 39,
40, 41]. The KS-DFT improves the barrier height ener-
gies to 29 and 45 kcal/mol, from the HF values of 40
and 60 kcal/mol for the forward and reverse reactions,
respectively.

Hydrogen shift reaction of hydroxycarbene
to formaldehyde, HCOH fi H2CO

Finally, we examine another chemical reaction, the
hydrogen shift reaction of hydroxycarbene to formal-
dehyde, along the intrinsic reaction coordinate (IRC)
(Fig. 2). The geometry of the transition state (TS) as well
as points on the IRC was determined by the complete
active space self-consistent field method with four active

Table 4. Energy difference between cis- and trans-butadiene calculated with conventional and (canonical and localized reference) PFMO
KS-DFT

cis)Butadiene trans)Butadiene Energy difference
a(kcal/mol)

Method Number of active
MO coefficients

Total Energy
(Hartree)

Number of
variables

Total Energy
(Hartree)

VDZ

Conventional KS 1440 (100%) )155.868278 1440 (100%) )155.874363 3.82
PFMO KS(canonical reference) 680 (47%) )155.863964 680 (47%) )155.870050 3.82
PFMO KS(localized reference) 832 (58%) )155.863888 840 (58%) )155.869924 3.79

VTZ

Conventional KS 2100 (100%) )155.908797 2100 (100%) )155.915006 3.90
PFMO KS(canonical reference) 1008 (48%) )155.903502 1020 (49%) )155.909891 4.01
PFMO KS(localized reference) 1272 (61%) )155.903665 1260 (60%) )155.909860 3.89

aAn experimental value of the energy difference between cis- and trans-butadieneis 2.9 kcal/mol [33].

Fig. 1. The interconversion of cyclobutene and cis-butadiene
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electrons and three active orbitals. The VDZ basis set
was used.

We selected 27 points for plotting the potential en-
ergy curves (PECs) along the reaction path. The ratios of
the active coefficients along the IRC are 50 and 60% for
the canonical and localized reference cases, respectively.
For example, at the TS, the number of the active coef-
ficients is reduced to 168 (canonical reference) and 204
(localized reference) from the original 352.

Figures 3 and 4 show the PECs at the HF and
DFT levels, respectively. The PEC of the PFMO HF is
almost identical to that of the full HF method, as would
be expected from the results of the PFMO HF in
the previous subsections. On the other hand, the PEC of
the PFMOKS method is several millihartrees above that
of the full KS-DFT method. However, the error is
almost constant along the IRC, with the PFMO DFT
keeping the shape of the PEC very well. The PFMO
KS method is, therefore, also effective for chemical
reactions.

Concluding remarks

We have presented a non-orthogonal KS-DFT method.
The DFT energy expression for non-orthogonal orbitals
was derived, and a computational scheme according
to the quasi-Newton-Raphson method was given. In
addition, PFMOs were introduced, which are a gener-
alization of the ELMOs of Couty et al. In the PFMOs,
only predetermined MO coefficients are active, with the
other coefficients either being frozen or neglected
(namely, frozen to zero). This restriction increases the
electronic energy according to the variational principle.
However, if the coefficients are properly restricted, the
increase is small (or at least the relative energy, such as
the activation energy, is small). A new procedure for
restriction was also presented.

The PFMO KS method has been applied to some
molecular calculations, and was compared with the
conventional orthogonal KS-DFT method. A compari-
son between the PFMO and conventional HF methods
was also made. The results were rather good. The dif-
ference between the PFMO and the conventional KS-
DFT methods in the total energy was larger than that
between the PFMO and the conventional HF method,
almost within 0.1 millihartree in the HF case, and sev-
eral millihartrees in the KS-DFT case. However, the
differences in relative energy were very small, to within

0.1 eV in the IP value and 0.1 kcal/mol in the barrier
height and in the potential energy calculations.

Finally, we would like to make three comments on
the efficiency, accuracy, and applicability of the present
method.

The reduction of the active MO coefficients was 40–
60%, depending on the molecular system. In all the cases
studied, the number of active coefficients was larger in
the localized reference orbital cases than in the canonical
reference orbital cases. One reason for this is the
symmetry of the canonical orbitals. The Boys localiza-
tion makes the MOs lose their symmetry, increasing the
non-zero values in the MO coefficients. Consequently,
the ratio of active MO coefficients is smaller than for the
canonical reference case. However, this feature occurs

Fig. 2. The hydrogen shift reaction of hydroxycarbene of formal-
dehyde, HCOH fi H2CO

Fig. 3. The potential energy curves of HCOH fi H2CO calcu-
lated with the conventional and (canonical and localized reference)
PFMO HF methods. The origin of the IRC corresponds to the TS
structure at the conventional HF level

Fig. 4. The potential energy curves of HCOH fi H2CO calcu-
lated with the conventional and (canonical and localized reference)
PFMO KS-DFT. The origin of the IRC corresponds to the TS
structure at the conventional HF level
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only for small test molecules, such as those investigated
in this work. In larger systems, the degree of localization
is usually larger, and in this case, the localized reference
orbitals will be more effective than the canonical refer-
ence orbitals. In addition, the ratio of active coefficients
itself will be small in large system because of the higher
possibility of localization. This implies an applicability
of the localized reference orbitals to large systems.

The threshold for the frozen coefficients was set to
a relatively small value to maintain the accuracy
(d =0.001). This can be relaxed if we are able to control
the number of reduced MO coefficients in some way. A
rough estimation of the increase in total energy is given
according to the variational principle as DE � N � d2,
where N represents the number of reduced MO coeffi-
cients. (This is a little larger in the KS-DFT case,
DE � c� N � d2, with the constant c assuming a value
of being 5–10). As long as we focus on the relative en-
ergy, then we can raise the threshold by keeping N � d2

nearly constant. This opens up the a possibility of a
more compact use of PFMOs.

The present scheme has been applied to some small
single molecules. However, it can readily be extended to
large systems that consist of an active reaction site and
other environmental parts. Roughly, the MO coefficients
on the reaction site are active, and the coefficients on the
environmental parts are fixed. The non-orthogonality
allows the MOs localized on the reaction site to overlap
with the environmental part MOs (if active coefficients
are properly selected). This degree of freedom can be a
great advantage over conventional orthogonal MO
methods in describing chemical reactions at the active
site, where the conventional active site MOs are rather
restricted by the orthogonality with the environmental
part MOs. Studies along this line will be presented in
future papers.

The PFMO KS method, as well as the PFMO HF
method, has been implemented in a molecular electronic
structure program package, UTChem [42]. All the
calculations were performed using UTChem.
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